Um eine digitale Information, ein Bit, auf einer Festplatte zu speichern, werden etwa drei Millionen Atome belegt. Forscher aus Karlsruhe, Straßburg und Chiba/Japan haben nun einen Speicher entwickelt, indem ein einzelnes Molekül ein Bit trägt. Maßgeblich beteiligt sind Nano-Wissenschaftler des Karlsruher Instituts für Technologie (KIT). Mittels eines Stromimpulses lässt sich das metallorganische Molekül zuverlässig zwischen leitendem, magnetischem und kaum-leitendem, unmagnetischem Zustand umschalten. Über diese für Moleküle neuartige Korrelation berichten die Forscher nun im Fachmagazin Nature Communications (doi: 10.1038/ncomms1940).
„Immer kleinere Bit-Größen in einer Festplatte zu realisieren, wird von dem superparamagnetischen Effekt verhindert“, erklärt Toshio Miyamachi, Erstautor der Studie und Forscher am Center for Functional Nanostructures (CFN) am KIT. Der superparamagnetische Effekt beschreibt, dass unter einer gewissen Größe der magnetischen Speicherkristalle, diese immer anfälliger für thermisches Umschalten werden und deshalb die Information rasch verloren geht. „Deshalb haben wir einen anderen Ansatz gewählt und in die Mitte eines organischen Moleküls aus 51 Atomen ein einzelnes magnetisches Eisenatom gesetzt. Die Hülle schützt die Information, die im zentralen Atom gespeichert ist.“ Neben der ultimativen Dichte von einem Bit pro Molekül hat diese Art des Speicherns mittels sogenannter spin-crossover-Molekülen auch den Vorteil, dass der Schreibvorgang zuverlässig und rein elektrisch von statten geht.
„Mittels eines Rastertunnelmikroskops konnten wir definierte Stromstöße auf das nanometergroße Molekül geben“, ergänzt Wulf Wulfhekel, Leiter der Karlsruher Forschergruppe am Physikalischen Institut. „Interessanterweise ändert sich dadurch nicht nur reproduzierbar der magnetische Zustand des Eisens, sondern auch die elektrischen Eigenschaften des Moleküls.“ Die zwei möglichen magnetischen Konfigurationen führen also zu verschiedenen Leitfähigkeiten und der magnetische Zustand lässt sich sehr einfach über eine Widerstandsmessung ermitteln.
In der aktuellen Studie legen die Forscher erst die Grundlagen und zeigen die prinzipielle Machbarkeit und Vorteile von Speichern aus spin-crossover-Molekülen. „Diese in einem Molekül kombinierten memristiven und spintronischen Eigenschaften stoßen das Tor zu einem neuen Forschungsfeld auf", sind sich die Forscher sicher. Als Memristoren werden Speicher bezeichnet, die Informationen als Widerstandsänderungen ablegen. Die Spintronik nutzt den magnetischen Spin einzelner Teilchen für die Informationsverarbeitung.
Beteiligt an der Studie waren die Labore des Center for Functional Nanostructures (CFN) am KIT, das Institut de Physique et Chimie des Matériaux (IPCMS) in Straßburg, das Synchrotron SOLEIL in Paris und die Universität Chiba in Japan.
Die Fachveröffentlichung:
T. Miyamachi, M. Gruber, V. Davesne, M. Bowen, S. Boukari, L. Joly, F. Scheurer, G. Rogez, T.K. Yamada, P. Ohresser, E. Beaurepaire, W. Wulfhekel, Robust spin crossover and memristance across a single molecule. Nat. Commun. , doi: 10.1038/ncomms1940
Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 10 000 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 22 800 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen. Das KIT ist eine der deutschen Exzellenzuniversitäten.