Wie viel Brom befindet sich in der Stratosphäre, und wie schädlich sind Bromverbindungen für die Ozonschicht? Diese Fragen zu beantworten, ist Ziel einer am Karlsruher Institut für Technologie (KIT) koordinierten Messkampagne: In Timmins (Ontario/Kanada) startete gestern (Sonntag, 7.9.) ein Ballon, dessen Gondel eine einzigartige Kombination von Fernerkundungsinstrumenten beherbergt. Diese ergänzen sich optimal bei der Messung stratosphärischer Substanzen. An der Kampagne sind auch das Deutsche Zentrum für Luft und Raumfahrt (DLR) und die Universität Heidelberg beteiligt.
Substanzen, die Brom enthalten, können die Ozonschicht abbauen. Ihre Emission ist etwa zur Hälfte natürlichen Ursprungs und zur Hälfte vom Menschen verursacht, beispielsweise über Brandschutzmaterialien, Feuerlöscher, Pestizide und Fungizide. Obwohl die Konzentration von Brom in der Stratosphäre – der zweiten Schicht der Erdatmosphäre – mehr als hundertmal geringer ist als die Konzentration von ebenfalls ozonschädlichem Chlor, ist die Wirkung auf die Ozonschicht vergleichbar. Denn Brom wird unter dem Einfluss von Licht viel leichter aus seinem Reservoir Bromnitrat in eine aktive Form umgewandelt als Chlor aus seinem Reservoir Chlornitrat.
Dank des Montrealer Protokolls über die Reduzierung der Produktion Ozon-schädlicher Stoffe, das 1989 in Kraft trat, nimmt die Gesamtmenge von Chlor in der Stratosphäre seit den 1990er-Jahren ab. Die Gesamtmenge von Brom hingegen hat erst vor einigen Jahren ihr Maximum erreicht und beginnt nun langsam zu sinken. Dadurch hat die relative Ozongefährlichkeit von Brom gegenüber Chlor noch zugenommen. Die Menge von Brom in der Stratosphäre sowie wichtige Details seiner Photochemie sind bis jetzt weniger gut als bei Chlor erforscht. So gibt es bisher keine simultane Messung der wichtigsten Bromsubstanzen Bromoxyd (BrO) und Bromnitrat (BrONO2). Dies erschwert die Bestimmung der Gesamtmenge von Brom in der Stratosphäre sowie die Einschätzung der Gefährlichkeit von Brom.
Der nun in Timmins (Ontario/Kanada) gestartete Ballon ist rund 400 000 Kubikmeter groß, trägt eine Nutzlast von rund 760 Kilogramm und steigt bis nahezu 40 Kilometer Höhe auf. Die Gondel beherbergt drei komplexe Fernerkundungsinstrumente, die einen breiten Teil des elektromagnetischen Spektrums abdecken und sich bei der Messung stratosphärischer Substanzen ideal ergänzen: das Infrarot-Spektrometer MIPAS-B des KIT-Instituts für Meteorologie und Klimaforschung – Atmosphärische Spurengase und Fernerkundung (IMK-ASF), das Fernes-Infrarot-/Sub-mm-Spektrometer TELIS des Deutschen Zentrums für Luft- und Raumfahrt (DLR) und das UV-/vis-Spektrometer mini-DOAS der Universität Heidelberg. „Neben Temperatur und Wolkenparametern kann diese weltweit einzigartige Kombination von Instrumenten rund 40 ozon-und klimarelevante Spurengase simultan messen“, erklärt der Leiter der Kampagne, Hermann Oelhaf vom IMK-ASF des KIT. Fernerkundung bedeutet, dass die Gase vor Ort nicht direkt gemessen werden, sondern elektromagnetische Strahlung detektiert wird. Aus dieser werden dann die atmosphärischen Parameter extrahiert, da diese mit der solaren und/oder terrestrischen Strahlung wechselwirken.
MIPAS-Gondel mit Fernerkundungsmessinstrumenten (Foto: Hermann Oelhaf, KIT)
Die am IMK-ASF des KIT entwickelte Lagestabilisierung der Gondel sorgt dafür, dass alle drei Instrumente dieselben Luftmassen erfassen. Die Fernerkundungsmethode ermöglicht außerdem die zwei- und dreidimensionale tageszeitabhängige kontinuierliche Erfassung der Spurengase. So lassen sich die photochemischen Reaktionen der beteiligten Spezies untersuchen – eine wichtige Voraussetzung zur Verbesserung von Atmosphären- und Klimamodellen. Die Kampagne ist in eine internationale Ballonkampagne unter dem Dach einer Kooperation zwischen den französischen und kanadischen Raumfahrtbehörden CNES und CSA eingebunden.
Primäres Ziel der weltweit einzigartigen Messungen ist die genaue höhenabhängige Erfassung der Bilanz des reaktiven Broms in der Stratosphäre samt der wichtigsten Verbindungen der Bromfamilie, besonders BrO und BrONO2. Darüber hinaus untersuchen die Forscher, wie realistisch die verfügbaren numerischen Modelle die Bromchemie simulieren und wie zuverlässig die im Labor gemessenen Reaktionskonstanten bei allen für Brom wichtigen Reaktionen sind.
Da die MIPAS-B/TELIS/mini-DOAS-Kombination praktisch alle ozon- und klimarelevanten Gase erfassen kann, dient das Projekt auch dazu, Bilanzen, Verteilung und photochemische Kopplung für alle chemischen Familien zu untersuchen sowie die Vertikalprofile wichtiger klimawirksamer Gase zu erfassen. Überdies werden die Messungen zur Validierung der noch aktiven Satellitengeräte MLS/AURA (USA) und ACE-FTS (Canada) verwendet.
Das MIPAS-B und mini-DOAS Team vor der Ballongondel (Foto: Hermann Oelhaf, KIT)
Flaggen flattern im Wind an der Startbasis (Foto: Hermann Oelhaf, KIT)
Die Gondel mit den Messinstrumenten MIPAS/TELIS/mini-DOAS wird am 'Flight train' (der Verbindung zwischen Nutzlast und Ballon) vom KIT-Ingenieur Hans Nordmeyer befestigt)
(Foto: Hermann Oelhaf, KIT)
Hilfsballons zur Anhebung der Gondel bei den Startvorebereitungen und dem Start (Foto: Hermann Oelhaf, KIT)
Das zarte Band der Atmosphäre mit Wolkenstrassen aus 36 km Höhe kurz vor Sonnenuntergang. Aufnahme von einer Kamera an der Ballongondel.
(Quelle: Tilman Wimmer, DLR)
Ballon kurz vor dem Start: Links der Hauptballon (400.000m**3 Volumen), rechts die Hilfsballons mit der startklaren Nutzlast (Foto: Hermann Oelhaf, KIT)
Ballon kurz vor dem Start bei Sonnenuntergang (Foto: Hermann Oelhaf, KIT)
Die Lebensbedingungen auf der Erde verändern sich im 21. Jahrhundert so einschneidend wie nie zuvor. Die Klima- und Umweltforschung steht damit vor großen Herausforderungen. Mit mehr als 650 Wissenschaftlerinnen und Wissenschaftlern aus über 30 Instituten entwickelt das KIT-Zentrum Klima und Umwelt Strategien und Technologien zur Sicherung der natürlichen Lebensgrundlagen.
Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 10 000 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 22 800 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen. Das KIT ist eine der deutschen Exzellenzuniversitäten.