Presseinformation 002/2016

Wie Kupfer organische Leuchtdioden effizienter macht

Forscher des KIT messen Intersystem Crossing direkt in Kupferkomplex mit thermisch aktivierter verzögerter Fluoreszenz – Publikation in Science Advances
Farbstoffe als Grundlage für organische Leuchtdioden werden dank dem Wissen über ihre Quantenmechanik maßgeschneidert. (Bild: KIT)
Farbstoffe als Grundlage für organische Leuchtdioden werden dank dem Wissen über ihre Quantenmechanik maßgeschneidert. (Bild: KIT)

Der Einsatz von Kupfer als Leuchtstoff ermöglicht kostengünstige und umweltverträgliche organische Leuchtdioden (OLEDs). Dabei sorgt die thermisch aktivierte verzögerte Fluoreszenz (TADF) für eine hohe Lichtausbeute. Wissenschaftler des Karlsruher Instituts für Technologie (KIT), der CYNORA GmbH und der Universität Saint Andrews haben nun das zugrundeliegende quantenmechanische Phänomen des Intersystem Crossing in einem Kupferkomplex gemessen. Die Ergebnisse der Grundlagenarbeit, welche die Forscher in der Zeitschrift Science Advances vorstellen, tragen zu energieeffizienteren OLEDs bei.

 

Organische Leuchtdioden gelten als Lichtquelle der Zukunft. Sie geben Licht gleichmäßig in alle Betrachtungsrichtungen ab, liefern brillante Farben und hohe Kontraste. Da OLEDs (Organic Light Emitting Diodes) sich auch transparent und flexibel herstellen lassen, eröffnen sie neue Anwendungs- und Gestaltungsmöglichkeiten, wie flächige Lichtquellen auf Fensterscheiben oder rollbare Displays. OLEDs bestehen aus ultradünnen Schichten organischer Materialien, die als Emitter dienen, zwischen zwei Elektroden. Beim Anlegen einer Spannung werden Elektronen von der Kathode sowie Löcher (positive Ladungen) von der Anode in den Emitter injiziert. Dort treffen Elektronen und Löcher zu gebundenen Elektronen-Loch-Paaren zusammen. Bei diesen sogenannten Exzitonen handelt es sich um Quasiteilchen im angeregten Zustand. Sie zerfallen anschließend in ihren Ausgangszustand und geben dabei Energie frei.

 

Allerdings können die Exzitonen zwei verschiedene Zustände annehmen: Singulett-Exzitonen zerfallen sofort wieder und senden Licht aus, während Triplett-Exzitonen ihre Energie als Wärme freigeben. In OLEDs treten gewöhnlich 25 Prozents Singuletts und 75 Prozent Tripletts auf. Um die Energieeffizienz einer OLED zu erhöhen, müssen auch die Triplett-Exzitonen zur Lichterzeugung genutzt werden. Dies geschieht in herkömmlichen organischen Leuchtdioden durch die Beimischung von Schwermetallen wie Iridium oder Platin, die teuer und nur begrenzt verfügbar sind sowie aufwendige Herstellungsverfahren bedingen.

 

Eine kostengünstigere und umweltverträglichere Möglichkeit besteht im Einsatz von Kupferkomplexen als Emittermaterialien. Dabei sorgt thermisch aktivierte verzögerte Fluoreszenz (TADF – Thermally Activated Delayed Fluorescence) für hohe Lichtausbeute und damit hohe Effizienz: Triplett-Exzitonen werden in Singlet-Exzitonen verwandelt, die wiederum Photonen aussenden. TADF beruht auf dem quantenmechanischen Phänomen des Intersystem Crossing (ISC), einem Übergang von einem elektronischen Anregungszustand in einen anderen mit veränderterer Multiplizität, beispielsweise vom Singulett zum Triplett und umgekehrt. Bei organischen Molekülen bestimmend ist dabei die Spin-Bahn-Kopplung, das heißt die Wechselwirkung des Bahndrehimpulses eines Elektrons in einem Atom mit dem Spin des Elektrons. So lassen sich alle Exzitonen, Tripletts wie Singuletts, zur Lichterzeugung nutzen. Kupfer als Leuchtstoff erreicht mit TADF eine Effizienz von 100 Prozent.

 

Stefan Bräse und Larissa Bergmann vom Institut für Organische Chemie (IOC) des KIT haben nun gemeinsam mit Forschern des OLED-Technologie-Unternehmens CYNORA und der Universität Saint Andrews in Groß-Britannien erstmals die Geschwindigkeit des Intersystem Crossing in einem hoch lumineszierenden Kupfer(I)-Komplex in festem Zustand mit thermisch aktivierter verzögerter Fluoreszenz gemessen. Über die Ergebnisse berichten sie im Magazin Science Advances. Als Zeitkonstante für das Intersystem Crossing von Singulett zu Triplett ermittelten die Wissenschaftler 27 Pikosekunden (27 billionstel Sekunden). Der umgekehrte Vorgang – Reverse Intersystem Crossing – von Triplet zu Singulett geht langsamer vonstatten und führt zu einer TADF, die durchschnittlich 11,5 Mikrosekunden anhält. Diese Messungen führen zu einem besseren Verständnis der Mechanismen, die zu TADF führen, und erleichtern damit die gezielte Entwicklung von TADF-Materialien für energieeffiziente OLEDs.

 

Larissa Bergmann, Gordon J. Hedley, Thomas Baumann, Stefan Bräse, Ifor D. W. Samuel: Direct observation of intersystem crossing in a thermally activated delayed fluorescence copper complex in the solid state. Science Advances, January 2016. DOI: 10.1126/sciadv.1500889

 

Details zum KIT-Zentrum Energie: http://www.energie.kit.edu

 

 

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 10 000 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 22 800 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen. Das KIT ist eine der deutschen Exzellenzuniversitäten.

or, 04.01.2016
Kontakt:

 

Christian Könemann
Pressesprecher
Tel: +49 721 608-41105
Fax: +49 721 608-43658
christian koenemann does-not-exist.kit edu

Kontakt für diese Presseinformation:

Kosta Schinarakis
Pressereferent
Tel.: +49 721 608-21165
Fax: +49 721 608-43658
E-Mail:schinarakis does-not-exist.kit edu
Das Foto kann in der höchsten uns vorliegenden Qualität angefordert werden unter:
presse does-not-exist.kit edu oder +49 721 608-41105.

Die Presseinformation steht auch als PDF-Datei zur Verfügung.