Press Release 112/2016

Two Become One: How to Turn Green Light Blue

Metal-Organic Frameworks with a Piggyback Structure Open up New Possibilities for Solar Cells and LEDs – Publication in the Advanced Materials Scientific Journal
Photon upconversion: Energy transfer between the molecules is based on electron exchange (Dexter electron transfer) (Illustration: Michael Oldenburg)
Photon upconversion: Energy transfer between the molecules is based on electron exchange (Dexter electron transfer) (Illustration: Michael Oldenburg)

The upconversion of photons allows for a more efficient use of light: Two photons are converted into a single photon having higher energy. Researchers at KIT now showed for the first time that the inner interfaces between surface-mounted metal-organic frameworks (SURMOFs) are suited perfectly for this purpose – they turned green light blue. The result, which is now being published in the Advanced Materials journal, opens up new opportunities for optoelectronic applications such as solar cells or LEDs. (DOI: 10.1002/adma.201601718)

 

Metal-organic frameworks (MOFs) are highly ordered molecular systems that consist of metallic clusters and organic ligands. At the Institute of Functional Interfaces (IFG) of KIT, researchers developed MOFs that grow epitaxially on the surfaces of substrates. These SURMOFs (surface-mounted metal-organic frameworks) can be produced from various materials and be customized using different pore sizes and chemical functionalities so that they are suited for a broad range of applications, e.g. for sensors, catalysts, diaphragms, in medical device technology or as intelligent storage elements.

 

Another field of application is optoelectronics, i.e. components that are capable of converting light into electrical energy or vice versa. Many of these components work on the basis of semiconductors. “The SURMOFs combine the advantages of organic and anorganic semiconductors,” Professor Christof Wöll, Director of IFG, explains. “They feature chemical diversity and crystallinity, allowing us to create ordered heterostructures.” In many optoelectronic components, a so-called heterojunction – this is an interfacing layer between two different semiconductor materials – controls the energy transfer between the various excited states. Researches of the KIT Institute of Microstructure Technology (IMT) now created a new piggyback SURMOF in which a second SURMOF grew epitaxially, i.e. layer by layer, on a first one. At this heterojunction, it was possible to achieve photon upconversion, transforming two low-energy photons into a single photon with higher energy, by virtually fusing them together. “This process turns green light blue. Blue light has a shorter wavelength and yields more energy. This is very important for photovoltaics applications,” explains Professor Bryce Richards, Director of IMT. The scientists are presenting their work in Advanced Materials, one of the leading journals for materials science.

 

The photon upconversion process shown by the Karlsruhe researchers is based on the so-called triplet-triplet annihilation. Two molecules are involved: a sensitizer molecule that absorbs photons and creates triplet excited states, and an emitter molecule that takes over the triplet excited states and, by using triplet-triplet annihilation, sends out a photon that yields a higher energy than the photons that were originally absorbed. “The challenge was to create this process as efficiently as possible,” explains Dr. Ian Howard, leader of a junior research group at IMT. “We matched the sensitizer and emitter layers in a way to obtain a low conversion threshold and a higher light efficiency at the same time.”

 

Since the triplet transfer is based on the exchange of electrons, the photon upconversion process revealed by the researchers includes an electron transfer across the interface between the two SURMOFs. This suggests the assumption that SURMOF-SURMOF heterojunctions are suitable for many optoelectronic applications such as LEDs and solar cells. One of the limitations for the efficiency of today’s solar cells is due to the fact that they can only use photons with a certain minimum energy for electric power generation. By using upconversion, photovoltaic systems could become much more efficient.

 

Michael Oldenburg, Andrey Turshatov, Dmitry Busko, Stephanie Wollgarten, Michael Adams, Nicolò Baroni, Alexander Welle, Engelbert Redel, Christof Wöll, Bryce S. Richards, and Ian A. Howard: Photon Upconversion at Crystalline Organic-Organic Heterojunctions. Advanced Materials, 2016. DOI: 10.1002/adma.201601718, http://onlinelibrary.wiley.com/doi/10.1002/adma.201601718/full

 

Being “The Research University in the Helmholtz Association”, KIT creates and imparts knowledge for the society and the environment. It is the objective to make significant contributions to the global challenges in the fields of energy, mobility, and information. For this, about 10,000 employees cooperate in a broad range of disciplines in natural sciences, engineering sciences, economics, and the humanities and social sciences. KIT prepares its 22,800 students for responsible tasks in society, industry, and science by offering research-based study programs. Innovation efforts at KIT build a bridge between important scientific findings and their application for the benefit of society, economic prosperity, and the preservation of our natural basis of life. KIT is one of the German universities of excellence.

or, 10.08.2016
Contact:


Christian Könemann
Chief Press Officer
Phone: +49 721 608-41105
Fax: +49 721 608-43658
christian koenemann does-not-exist.kit edu

Contact for this press release:

Kosta Schinarakis
Press Officer
Phone: +49 721 608-21165
Fax: +49 721 608-43658
E-Mail:schinarakis does-not-exist.kit edu
The photo in the best quality available to us may be requested by
presse does-not-exist.kit edu or phone: +49 721 608-41105.

The press release is available as a PDF file.