Press Release 136/2012

Radar Measurements of Highest Precision

KIT and RUB Researchers Reach Record Precision
Das Radarsystem in der Messkammer: Die Hardware entstand an der RUB, die  Algorithmik am KIT. (Foto: Timo Jaeschke, RUB)
The radar system in the measurement chamber: The hardware was developed by RUB, algorithmics by KIT. (Photo: Timo Jaeschke, RUB)

Scientists of KIT and Ruhr-Universität Bochum (RUB) have reached a record precision in radar distance measurements. With the help of a new radar system, an accuracy of one micrometer was achieved in joint measurements. The system is characterized by a high precision and low cost. Potential applications lie in production and plant technology.

Precise determination of distances is of increasing importance in fabrication technology, for instance, when actuating robots, producing micromechanical components, or controlling machine tools. Frequently, glass scales, inductive sensors, or laser measurement systems are used for distance measurements. Glass scales are very precise and reach micrometer precision. However, they are too inflexible and expensive for daily use. Inductive sensors measuring distances with a coil, magnetic field, and movement work in a contact-free manner and, hence, without wear, but are limited in the measurement repetition rate. Lasers also allow for a highly precise measurement, but are not suited for environments with dust, humidity, or strongly changing light conditions. Radar signals, by contrast, can penetrate dust and fog quite well. So far, radar systems have been used mainly for weather observation, air monitoring or distance measurement in vehicles.

Scientists of the Institut für Hochfrequenztechnik und Elektronik (IHE) of Karlsruhe Institute of Technology (KIT) under Prof. Thomas Zwick and of the Chair for Integrated Systems of Ruhr-Universität Bochum (RUB) under Prof. Nils Pohl have now developed and successfully applied a radar system for distance measurements. It is characterized by a so far unreached precision: In a joint test in July this year, the researchers from Karlsruhe and Bochum reached a new record precision for radar distance measurements of one mi-crometer. One micrometer is a millionth of a meter. For comparison: A human hair is about 40 to 60 micrometers thick.

For measurement, the scientists use a frequency-modulated continuous wave radar (FMCW radar), whose emitter is operated continuously during measurement. The RUB researchers developed the hardware, KIT scientists the algorithmics. The radar system with a special measurement setup measures distances of up to several meters in free space with micrometer accuracy. Compared to laser systems, this system is not only cheaper, but can also measure absolute positions. Due to this quasi unlimited range of uniqueness, the radar is far superior to the laser.

The radar system is now being optimized in several research projects. Its accuracy will be further improved. In the future, it will be used to make measurements in production and plant technology with high precision, in a flexible manner, and at low costs.

 

Being “The Research University in the Helmholtz Association”, KIT creates and imparts knowledge for the society and the environment. It is the objective to make significant contributions to the global challenges in the fields of energy, mobility, and information. For this, about 10,000 employees cooperate in a broad range of disciplines in natural sciences, engineering sciences, economics, and the humanities and social sciences. KIT prepares its 22,800 students for responsible tasks in society, industry, and science by offering research-based study programs. Innovation efforts at KIT build a bridge between important scientific findings and their application for the benefit of society, economic prosperity, and the preservation of our natural basis of life. KIT is one of the German universities of excellence.

or, 05.09.2012
Contact:


Christian Könemann
Chief Press Officer
Phone: +49 721 608-41105
Fax: +49 721 608-43658
christian koenemann does-not-exist.kit edu

Contact for this press release:

Monika Landgraf
Press Officer
Phone: +49 721 608-21150
Fax: +49 721 608-41150
monika landgraf does-not-exist.kit edu
The photo in the best quality available to us may be requested by
presse does-not-exist.kit edu or phone: +49 721 608-41105.

The press release is available as a PDF file.