Presseinformation 018/2013

Nature: Kleinster Schwingungssensor der Quantenwelt

Mittels des magnetischen Spins eines Moleküls lassen sich Schwingungen in einem benachbarten Kohlenstoffnanoröhrchen anregen / Grundlage für Sensoren und Quantencomputer
Der Spin des Moleküls (orange) klappt um und verformt das Nanoröhrchen (schwarz), das zwischen zwei Elektroden (gold) aufgespannt ist. (Bild: C.Grupe/KIT)
Der Spin des Moleküls (orange) klappt um und verformt das Nanoröhrchen (schwarz), das zwischen zwei Elektroden (gold) aufgespannt ist. (Bild: C. Grupe/KIT)

Kohlenstoffnanoröhrchen und magnetische Moleküle gelten als Bausteine für zukünftige nanoelektrische Systeme. Dabei spielen sowohl ihre elektrischen als auch ihre mechanischen Eigenschaften eine Rolle. Forscher des Karlsruher Instituts für Technologie und französische Kollegen aus Grenoble und Strasbourg berichten nun in der Fachzeitschrift nature nanotechnology, wie sich die beiden Bausteine auf atomarer Ebene zusammensetzen lassen und ein quantenmechanisches System mit neuartigen Eigenschaften bilden. (DOI: 10.1038/nnano.2012.258)

 

In dem Experiment nutzten die Forscher ein Kohlenstoffnanoröhrchen, das zwischen zwei Metallelektroden etwa einen Mikrometer weit aufgespannt war und mechanisch schwingen kann. Daran brachten sie ein organisches Molekül an, das dank eines eingebauten Metallatoms ein magnetisches Moment trug, welches sich in einem äußeren Magnetfeld ausrichten ließ.

 

„In diesem Aufbau konnten wir zeigen, dass die Schwingungen des Röhrchens direkt beeinflusst werden, wenn der Spin sich parallel oder antiparallel zum Magnetfeld einstellt“, erläutert Mario Ruben, Arbeitsgruppenleiter am KIT. Beim Umklappen des Spins entsteht ein Rückstoß, der an das Kohlenstoffnanoröhrchen weitergegeben wird und es in Schwingung versetzt. Die Schwingung verändert die Atomabstände des Röhrchens und damit direkt seine Leitfähigkeit, die als Maß für die Bewegung herangezogen wurde.

 

Die starke Wechselwirkung zwischen einem magnetischen Spin und einer mechanischen Schwingung eröffnet - neben der Bestimmung der Bewegungszustände des Kohlenstoffnanoröhrchens - einige interessante Anwendungsfelder. So ließen sich die Massen von einzelnen Molekülen bestimmen oder magnetische Kräfte im Nanobereich messen. Auch der Einsatz als Quantenbit in einem Quantencomputer wäre denkbar.

 

Im begleitenden Kommentarartikel in der gleichen Ausgabe von nature nanotechnologie wird unterstrichen, wie wichtig solche Wechselwirkungen in der Quantenwelt, d. h. im Bereich diskreter Energien und der Tunnelerscheinungen, sind, um in Zukunft die Vorteile der nanoskopischen Effekte auch in makroskopischen Anwendungen zu nutzen. Insbesondere könnte die Verbindung von Spin, Schwingung und Rotation auf der Nanoebene den Weg zu Anwendungen öffnen, die kein klassisches Vorbild haben und wirklich neuartige Technologie darstellen.

 

 

 

 

 

Homepage der Forschungsgruppen am KIT:

http://www.ruben-group.de

 

 

 

 

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 10 000 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 22 800 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen. Das KIT ist eine der deutschen Exzellenzuniversitäten.

kes, 05.02.2013
Kontakt:

 

Christian Könemann
Pressesprecher
Tel: +49 721 608-41105
Fax: +49 721 608-43658
christian koenemann does-not-exist.kit edu

Kontakt für diese Presseinformation:

Kosta Schinarakis
Pressereferent
Tel.: +49 721 608-21165
Fax: +49 721 608-43658
E-Mail:schinarakis does-not-exist.kit edu
Das Foto kann in der höchsten uns vorliegenden Qualität angefordert werden unter:
presse does-not-exist.kit edu oder +49 721 608-41105.

Die Presseinformation steht auch als PDF-Datei zur Verfügung.