Wie finde ich das richtige Speichersystem für meine Anwendung? Diese Frage stellen sich derzeit viele potentielle Käufer. Die am Markt verfügbaren Batteriespeicher unterscheiden sich erheblich in puncto Sicherheit, Preis sowie Leistungsfähigkeit und damit letztlich auch in der Wirtschaftlichkeit. Auf der Leitmesse Intersolar in München stellt das KIT nun seine neusten Forschungsergebnisse vor, wie effiziente Batterien gebaut sein sollten, und gibt Tipps, die bei der zuverlässigen Beurteilung der Leistungsfähigkeit von Speichersystemen helfen.
Strom aus Sonnenenergie gehört zum Energiemix der Stadt der Zukunft. Schon heute nutzen Hausbesitzer bewusst Sonnenstrom vom eigenen Dach. Doch wie lässt sich Sonnenenergie für den Eigenverbrauch effizient und kostengünstig zwischenspeichern? Denn Speicher ist nicht gleich Speicher! Selbst wenn man sich auf eine Technologie wie etwa die Lithium-Ionen-Technologie fokussiert, gibt es noch erhebliche Unterschiede. Die Exponate am Stand des KIT (B1.631) auf der Intersolar vom 10. bis 12. Juni 2015 in München zeigen auf, wo Knackpunkte liegen können. Gute und schlechte Zellverbindungsarten und ihr direkter Einfluss auf die Leistungsfähigkeit, von Fachleuten Performance genannt, werden gezeigt. Ebenso die Qualitätsanforderungen bei der Montage von Batteriemodulen. Und ein Industrieroboter am Stand führt vor, welche Rolle das Punktschweißen spielt. Die Performance von Speichersystemen baut auf dem durchdachten Zusammenspiel aller Bauteile auf.
„Durch unsere tägliche Forschungsarbeit haben wir einen breiten Marktüberblick“, so Dr. Andreas Gutsch vom Projekt Competence E am Karlsruher Institut für Technologie (KIT). Die Experten am KIT führen standardmäßig Performancetests durch: an eigenen Prototypen aus dem Labor, aber auch zu Vergleichszwecken mit nahezu allen kommerziell verfügbaren Lithium-Ionen-Zellen, die für stationäre Speicher infrage kommen. Die Erfahrungen zeigen, dass ein breites Spektrum in der Leistung der verschiedenen Zellen vorliegt. Im Vergleich zu Photovoltaikmodulen ist die Performancespanne bei Speichern extrem groß. „Der Kunde wird teilweise in den Nebel geschickt. Nahezu alle getesteten Zellen sind in Systemen am deutschen Markt verfügbar. Die Speicher haben völlig unterschiedliche Preise, aber der Preis hat nichts zu tun mit der Wirtschaftlichkeit und Performance. Der Markt ist in Bezug auf die Preis-Performance-Relation völlig intransparent und es werden Systeme verkauft, die ihr Geld in puncto Performance nicht wert sind.“
Es dauert rund 3.000 Lade- und Entladevorgänge, bis ein stationäres Speichersystem seine Investitionskosten eingespielt hat. Erst ab 3.000 Vollzyklen bis zum Ende der Batterielebensdauer arbeitet es rentabel und wirft einen wirtschaftlichen Gewinn ab. Die Performancetests am KIT haben gezeigt, dass einige Zellen schon nach 1.000 Vollzyklen 30 Prozent ihrer Kapazität verlieren. Mit diesen Kapazitätseinbrüchen lassen sich stationäre Speicher nicht mehr wirtschaftlich betreiben.
Neben der Zyklenfestigkeit spielt für die Performance eines Speichersystems auch der Innenwiderstand der Zellen eine wichtige Rolle. Die Alterung der Batterien lässt sich demnach an zwei wichtigen Merkmalen ablesen: Die Kapazität nimmt ab oder der Innenwiderstand der Zellen steigt. Mit dem Anstieg des Innenwiderstands geht zunehmend elektrische Energie in Form von Wärme verloren. Der Anstieg des Innenwiderstands ist somit ein Parameter dafür, wie die Batterieerwärmung mit der Alterung der Batterie steigt. „Wenn Sie wissen möchten, ob ein Batteriehersteller gute Systeme anbietet, dann fragen Sie nicht nur nach der Zyklenfestigkeit, sondern vor allem auch nach dem Anstieg des Innenwiderstands mit der Alterung und dem Umgang damit“, so Gutsch. „Dies sollte im Thermomanagement der Batterie entsprechend berücksichtigt sein.“
Für den Wirkungsgrad des Gesamtsystems ist die gesamte Kette vom Solargenerator über die Batterie inklusive Batteriewechselrichter bis hin zum Verbraucher entscheidend. „Sehr gute Batteriesysteme mit Lithium-Ionen-Zellen haben heute Wirkungsgrade im Bereich von 99 Prozent. Das ist die Basis für einen hervorragenden Systemwirkungsgrad. Durch alle weiteren Komponenten im System wird er nur noch schlechter“, sagt Dr. Olaf Wollersheim, der das Projekt Competence E zusammen mit Gutsch leitet. Hier kommt es neben hocheffizienten Lithium-Ionen-Zellen auf die richtige Dimensionierung des Gesamtsystems für die jeweilige Anwendung an. Ein optimaler Systemwirkungsgrad wird dann erzielt, wenn die Leistungsfähigkeit der einzelnen Komponenten präzise aufeinander abgestimmt ist. Neben der Systemarchitektur spielen beim Batteriewirkungsgrad etwa auch die Zell- und Batteriemodulverbindungstechniken eine wichtige Rolle. „Hier gibt es in kommerziellen Systemen große Unterschiede: Ein teures System aus best-in-class Zellen kann durch schlechte Verbindungstechniken schnell zu einem Mittel- bis Unterklasse-Speicher werden. Hocheffiziente Heimspeicher können aber schon heute wirtschaftlich sein und die Strombezugskosten durch Erhöhung des Eigenverbrauchs aus Photovoltaikanlagen senken – hier kommt es auf das richtige System für die jeweilige Anwendung an“.
Das Projekt Competence E vereint die wirtschaftlich relevanten Forschungsaspekte vom Batteriematerial bis zum elektrischen Speichersystem auf eine deutschlandweit einzigartige Weise. Mit einer offenen Technologieplattform für elektrische Energiespeicher zielt der systemische Ansatz auf industriell anwendbare Lösungen und deren Produktionsverfahren. Dank der Integration entlang der Wert¬schöpfungskette soll das ehrgeizige Ziel angegangen werden, bis 2018 Batteriesysteme zu fertigen, die eine Energiedichte von 250 Wattstunden pro Kilogramm bei Kosten von 250 Euro pro Kilowattstunde aufweisen. Damit wird ein wichtiger Schritt in Richtung Energiewende und Klimaschutzziele umgesetzt: eine erhöhte Speicherfähigkeit für stationäre Speicher zum Ausgleich der Fluktuation von erneuerbaren Energien sowie eine Verlängerung der Reichweite von Elektrofahrzeugen zur Erhöhung der Akzeptanz.
Mehr zum Projekt Competence E unter: http://www.competence-e.kit.edu/
Das KIT verfügt über umfangreiche fachliche Kompetenzen zur Erforschung, Entwicklung und integrativen Planung der Stadt der Zukunft in allen wesentlichen Aspekten. Wissenschaftlerinnen und Wissenschaftler aus fünf KIT-Zentren – Klima und Umwelt; Energie; Mobilitätssysteme; Mensch und Technik; Information, Systeme, Technologien – befassen sich aus disziplinärer Perspektive und in inter- und transdisziplinärer Weise mit der Erforschung und nachhaltigen Gestaltung urbaner Räume.
Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 10 000 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 22 800 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen. Das KIT ist eine der deutschen Exzellenzuniversitäten.