Den Raum in Zellen mit optimalen geometrischen Eigenschaften einzuteilen, ist eine zentrale Herausforderung in vielen Bereichen der Wissenschaft und Technik. Nun haben Forscher am Karlsruher Institut für Technologie (KIT) mit Kolleginnen und Kollegen aus mehreren Ländern festgestellt, dass bei amorphen, das heißt ungeordneten Systemen eine Optimierung der einzelnen Zellen schrittweise zur stets gleichen Struktur führt, obwohl diese amorph bleibt. Dabei nähert sich die ungeordnete Struktur rasch einer Hyperuniformität an – einer versteckten Ordnung in großen Maßstäben. Die Forscher berichten in der Zeitschrift Nature Communications. (DOI: 10.1038/s41467-019-08360-5)
Von der Suche nach dem optimalen Schaum bis zur Suche nach einer möglichst platzsparenden Art, Kugeln zusammenzupacken – die ideale Tesselierung des dreidimensionalen Raums, das heißt seine lückenlose Unterteilung in Zellen mit speziellen geometrischen Eigenschaften, beschäftigt die Wissenschaft schon lange. Sie ist nicht nur theoretisch interessant, sondern für viele praktische Anwendungen relevant, unter anderem in der Telekommunikation, zur Bildverarbeitung oder für komplexe Granulate. Mit einem speziellen Problem der Tesselierung, nämlich dem Quantisierungsproblem, haben sich nun Forschende am Institut für Stochastik des KIT genauer befasst. „Ziel ist eine Einteilung des Raums in Zellen, bei der – intuitiv gesagt – alle Punkte in einer Zelle so nahe wie möglich am Zellzentrum liegen“, erklärt Dr. Michael Andreas Klatt, früherer Mitarbeiter des Instituts, der jetzt an der Princeton University in den USA tätig ist. Lösungen des Quantisierungsproblems lassen sich zur Entwicklung neuartiger Materialien nutzen und können künftig auch zu einem besseren Verständnis der einzigartigen Eigenschaften von komplexem Zellgewebe beitragen.
In ihrer nun in der Zeitschrift Nature Communications veröffentlichten theoretischen Arbeit, die Methoden der stochastischen Geometrie und der statistischen Physik verbindet, verwendeten die Forscherinnen und Forscher am KIT sowie an der Princeton University, an der Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, am Ruđer Bošković Institut in Zagreb und an der Murdoch University in Perth den sogenannten Lloyd-Algorithmus, eine Methode zur Einteilung des Raums in gleichmäßige Regionen. Jede Region weist genau ein Zentrum auf und umfasst diejenigen Punkte des Raums, die näher an diesem Zentrum liegen als an jedem anderen Zentrum. Solche Regionen heißen Voronoi-Zellen. Aus allen Punkten, die mehr als ein nächstgelegenes Zentrum besitzen, also die Grenzen der Regionen bilden, entsteht das Voronoi-Diagramm.
Die Wissenschaftlerinnen und Wissenschaftler untersuchten die schrittweise lokale Optimierung verschiedenster Punktmuster und stellten fest, dass alle vollständig amorphen, das heißt ungeordneten Zustände nicht nur vollständig amorph bleiben, sondern dass die anfangs vielfältigen Prozesse zu einem statistisch ununterscheidbaren universellen Ensemble konvergieren. Dabei gleicht die schrittweise lokale Optimierung auch extreme globale Schwankungen der Dichte schnell aus. „So entsteht eine Struktur, die fast hyperuniform ist – sie zeigt keine offensichtliche Ordnung, wohl aber eine versteckte Ordnung in großen Maßstäben“, berichtet Klatt.
Somit ist diese versteckte Ordnung in den amorphen Systemen universell, das heißt stabil und unabhängig von den Eigenschaften des Ausgangszustands. Das vermittelt grundlegende Einsichten in das Wechselspiel von Ordnung und Unordnung. Praktisch nutzen lässt sich dies unter anderem zur Entwicklung neuartiger Materialien: Interessant sind beispielsweise photonische Metamaterialien, ähnlich einem Halbleiter für Licht, oder sogenannte Blockcopolymere, das heißt Nanopartikel, die aus längeren Sequenzen oder Blöcken verschiedenartiger Moleküle zusammengesetzt sind und selbstorganisiert regelmäßige und komplexe Strukturen ausbilden.
Die in Nature Communications vorgestellte Arbeit entstand im Kontext der von der Deutschen Forschungsgemeinschaft (DFG) finanzierten Forschungsgruppe „Geometry & Physics of Spatial Random Systems" mit Arbeitsgruppen am KIT, an der FAU und der Universität Aarhus (Dänemark). In der interdisziplinär ausgerichteten Gruppe waren unter anderem stochastische Geometrie, räumliche Statistik und statistische Physik vertreten. Der KIT Publikationsfonds förderte die Veröffentlichung der Arbeit.
Originalpublikation (Open Access):
Michael A. Klatt, Jakov Lovrić, Duyu Chen, Sebastian C. Kapfer, Fabian M. Schaller, Philipp W. A. Schönhöfer, Bruce S. Gardiner, Ana-Sunčana Smith, Gerd E. Schröder-Turk & Salvatore Torquato: Universal hidden order in amorphous cellular geometries. Nature Communications, 2019. (DOI: 10.1038/s41467-019-08360-5)
Animation zur Publikation unter
https://drive.google.com/open?id=1f0b0dfxanFFbABWt_xmXHxyEdaCNmGJH
Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 10 000 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 22 800 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen. Das KIT ist eine der deutschen Exzellenzuniversitäten.