Presseinformation 118/2021

Optik und Photonik: Dünnster optischer Diffusor für neue Anwendungen

Neuartige optische Komponente auf der Basis von Metamaterialien aus Silizium-Nanopartikeln – Publikation in Advanced Materials
Die Streuzentren – Silizium-Nanopartikel, hier als schwarze Scheiben dargestellt – auf dem transparenten Substrat streuen (einstellbar) bestimmte Farben von Licht; andere Wellenlängen werden nicht beeinflusst. (Grafik: Dennis Arslan, Universität Jena)
Die Streuzentren – Silizium-Nanopartikel, hier als schwarze Scheiben dargestellt – auf dem transparenten Substrat streuen (einstellbar) bestimmte Farben von Licht; andere Wellenlängen werden nicht beeinflusst. (Grafik: Dennis Arslan, Universität Jena)

Die Miniaturisierung von optischen Komponenten ist eine Herausforderung in der Photonik. Forschenden des Karlsruher Instituts für Technologie (KIT) und der Friedrich-Schiller-Universität Jena ist es gelungen, einen Diffusor – eine optische Streuscheibe – auf der Basis von Silizium-Nanopartikeln zu entwickeln. Damit können sie Richtung, Farbe und Polarisation von Licht gezielt steuern. Anwendungen kann die neuartige Technologie etwa in transparenten Bildschirmen oder in der Augmented Reality finden. Über ihre Ergebnisse berichten die Forschenden in der Zeitschrift Advanced Materials. (DOI: 10.1002/adma.202105868)

Die Photonik, die Wissenschaft von der Erzeugung, Ausbreitung und Detektion von Licht, gilt als Treiber bei der Entwicklung von Technologien für das 21. Jahrhundert. Eine Herausforderung für die Forschung besteht darin, traditionelle optische Komponenten wie Linsen, Spiegel, Prismen oder Diffusoren zu miniaturisieren oder ihre Merkmale um Eigenschaften zu ergänzen, die erst durch die Nanophotonik zugänglich sind. Dies führt zu neuen Anwendungen wie miniaturisierten Sensoren in autonom fahrenden Fahrzeugen oder integrierten photonischen Quantencomputern.

Diffusoren sind Streuscheiben, die einfallendes Licht mithilfe kleiner Streuzentren beeinflussen und etwa gleichmäßig in alle Richtungen verteilen. Um eher massive traditionelle Diffusoren zu ersetzen, brachten Forschende des KIT und der Friedrich-Schiller-Universität Jena eine Schicht spezieller Silizium-Nanopartikel auf ein Substrat auf. Dabei verteilten sie die Partikel in einer ungeordneten, aber sorgfältig geplanten Weise. Die Nanopartikel sind hundertmal dünner als ein menschliches Haar und wechselwirken mit bestimmten einstellbaren Wellenlängen des Lichts. Richtung, Farbe und Polarisation von Licht können mit diesen Meta-Oberflächen gezielt gesteuert werden.

„Sweet Spot“ für die perfekte Diffusion

„Das Forschungsteam ging zwei grundlegenden Fragen nach: Wie stark können wir den optischen Diffusor verkleinern und wie genau muss die Unordnung in der räumlichen Struktur der Nanopartikel sein?", so Aso Rahimzadegan, Doktorand am KIT und einer der beiden Hauptautoren der Studie. „Bemerkenswerterweise haben wir einen ‚Sweet Spot‘ für die Unordnung gefunden, der zu einer perfekten Diffusion führt.“ Dennis Arslan, Doktorand an der Universität Jena und ebenfalls Hauptautor dieser Publikation, erläutert: „Wir haben Meta-Oberflächen-Diffusoren hergestellt, die, wenn man sie mit bloßem Auge betrachtet, aus allen Richtungen gleich hell erscheinen. Das Bemerkenswerte daran ist, dass dies alles in einer Schicht mit einer Dicke von nur 0,2 Mikrometern geschieht. Die Diffusoren streuen Licht einer bestimmten Farbe und lassen andere Wellenlängen ungestört passieren.” Diese Eigenschaft sei beispielsweise für wissenschaftliche Anwendungen nützlich, aber auch Konsumartikel wie transparente Bildschirme, die von beiden Seiten betrachtet werden könnten, holografische Projektoren oder Augmented-Reality-Headsets profitierten davon. Nur durch die Kombination experimenteller und theoretischer Expertise beider Partner war es möglich, Antworten auf die anspruchsvollen Fragen zu finden.

Die Forschung, die zu diesen Ergebnissen führte, wurde in dem von der Deutschen Forschungsgemeinschaft geförderten Schwerpunktprogramm „Tailored Disorder" durchgeführt und war am KIT in das Exzellenzcluster 3D Matter Made to Order integriert.

Originalpublikation (Open Access)

Dennis Arslan, Aso Rahimzadegan, Stefan Fasold, Matthias Falkner, Wenjia Zhou, Maria Kroychuk, Carsten Rockstuhl, Thomas Pertsch, and Isabelle Staude: Towards perfect optical diffusers: Dielectric Huygens' metasurfaces with critical positional disorder; Advanced Materials, 2021. DOI: 10.1002/adma.202105868

https://onlinelibrary.wiley.com/doi/10.1002/adma.202105868

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 10 000 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 22 800 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen. Das KIT ist eine der deutschen Exzellenzuniversitäten.

jh, 22.12.2021
Kontakt:

 

Christian Könemann
Pressesprecher
Tel: +49 721 608-41105
Fax: +49 721 608-43658
christian koenemann does-not-exist.kit edu

Kontakt für diese Presseinformation:

Sandra Wiebe
Pressereferentin
Tel.: +49 721 608-41172
sandra wiebe does-not-exist.kit edu
Das Foto kann in der höchsten uns vorliegenden Qualität angefordert werden unter:
presse does-not-exist.kit edu oder +49 721 608-41105.