Presseinformation 080/2023

Landnutzung: Mehr Nahrung produzieren und gleichzeitig mehr Kohlenstoff speichern

Forschende des KIT und des HeiGIT zeigen, wie sich durch eine veränderte Landnutzung gleichzeitig die Nahrungsmittelproduktion steigern und mehr Kohlenstoff speichern lässt
Eine optimierte Landnutzung könnte unter Berücksichtigung klimatischer Bedingungen trotzdem die Erträge maßgeblich erhöhen und dabei den Flächenverbrauch in Grenzen halten. (Foto: Anita Bayer)
Eine optimierte Landnutzung könnte unter Berücksichtigung klimatischer Bedingungen trotzdem die Erträge maßgeblich erhöhen und dabei den Flächenverbrauch in Grenzen halten. (Foto: Anita Bayer)

Die Nahrungsmittelproduktion verdoppeln, Wasser sparen und gleichzeitig die Kohlenstoffspeicherung erhöhen – das klingt paradox, wäre aber, zumindest nach dem biophysikalischen Potenzial der Erde, theoretisch möglich. Nötig wäre allerdings eine radikale räumliche Neuordnung in der Landnutzung. Das haben Forschende des Karlsruher Instituts für Technologie (KIT) und des Heidelberg Institute for Geoinformation Technology (HeiGIT), einem An-Institut der Universität Heidelberg, herausgefunden. Ihre Ergebnisse haben sie in den Proceedings of the National Academy of Sciences (PNAS) veröffentlicht. (DOI: doi.org/10.1073/pnas.2220371120)

Wie Menschen die Erdoberfläche nutzen, einschließlich für die Produktion von Nahrungsmitteln, hat sich in den vergangenen Jahrhunderten stark verändert. Immer mehr Menschen leben auf der Erde, mehr Nahrung wird benötigt und Lebensmittel können heute in kurzer Zeit rund um die Welt transportiert werden. Die historisch gewachsenen Systeme der Nahrungsmittelproduktion spiegeln, wie sich in der Studie zeigt, allerdings nicht das biophysikalische Potenzial unserer Ökosysteme wider. Lebensmittel werden demnach nicht dort produziert, wo es flächen-, wasser- und CO2-technisch am effizientesten wäre. Stattdessen werden, so die Autorinnen und Autoren der Studie, weiterhin Wälder für Acker- und Weideland gerodet und Felder in ariden Gebieten bewässert – Maßnahmen, die sich massiv negativ auf die Wasserverfügbarkeit und die Kohlenstoffspeicherung auswirkten.

Was würde aber passieren, wenn Felder, Weiden und natürliche Vegetation stattdessen dorthin verlagert würden, wo es am effizientesten wäre? Wenn Ackerflächen auf Gebiete beschränkt würden, in denen keine intensive Bewässerung nötig ist? Um das herauszufinden, haben Forschende des KIT und des Heidelberg Institute for Geoinformation Technology (HeiGIT), einem An-Institut der Universität Heidelberg, ein dynamisches Vegetationsmodell mit einem Optimierungsalgorithmus kombiniert und so alternative Anordnungen der globalen Landnutzung und deren Auswirkungen untersucht.

Im Durchschnitt über 80 Prozent mehr Nahrung und drei Prozent mehr CO2-Speicherung durch Optimieren der Landnutzung

Die Modellierung einer verbesserten Landnutzung wurde für Klimabedingungen aus einem optimistischen und einem derzeit realistischeren Klimawandelszenario für die nahe und ferne Zukunft (2033 bis 2042 und 2090 bis 2099) durchgeführt. Das Ergebnis: Allein durch räumliche Umstrukturierung ließe sich die Produktion von Lebensmitteln um durchschnittlich 83 Prozent erhöhen, während gleichzeitig die zur Verfügung stehende Wassermenge um acht Prozent und die CO2-Speicherung um drei Prozent zunehmen würden. Die Steigerungen wären noch um ein Vielfaches höher, wenn einer der drei Zielgrößen Vorrang vor den anderen beiden eingeräumt würde.

„In unserer Arbeit untersuchen wir ausschließlich das biophysikalische Potenzial als Grundlage einer Landnutzung, welche die bestehenden Zielkonflikte besser berücksichtigt“, sagt die Erstautorin der Studie, Dr. Anita Bayer vom Campus Alpin des KIT in Garmisch-Partenkirchen. „Es zeigt sich, dass es durchaus Regionen gibt, in denen bestimmte Landnutzungen eindeutig vorteilhaft, also ‚optimal‘, wären.“ Entsprechend der Studienergebnisse müssten tropische und boreale Wälder aufgrund ihrer herausragenden Funktion als CO2-Speicher in ihrem natürlichen Zustand erhalten oder entsprechend wiederaufgeforstet und nicht als Anbau- oder Weidefläche genutzt werden. Die gemäßigten Breiten würden hauptsächlich als Ackerland und in einem geringen Umfang als Weideland dienen. Damit würde der Flächenverlust durch die Wiederaufforstung tropischer und borealer Wälder kompensiert werden. Die weiten, offenen Flächen der tropischen und subtropischen Savannen und Grasländer wiederum würden vor allem als Weideland und für die Futtermittelproduktion genutzt. „Dieses Bild der optimalen Landnutzungslösungen hat sich in unserer Arbeit als sehr stabil herausgestellt“, fügt Bayer hinzu.

Veränderung der Landnutzung bewusst gestalten

Die Studie zeigt, dass die regionale Praxis vom theoretisch erreichbaren Optimum stark abweicht und massive Landnutzungsänderungen nötig wären, um das biophysikalische Potenzial besser auszunutzen und so die Gesamterträge an Nahrungsmitteln, Wasser und Kohlenstoffspeicherung gemeinsam zu erhöhen. „Auch wenn solche großflächigen Landnutzungsänderungen auf den ersten Blick völlig unrealistisch erscheinen, ist es hilfreich, sich bewusst zu machen, dass der Klimawandel ohnehin große Veränderungen der Anbaugebiete mit sich bringen wird“, sagt Professor Sven Lautenbach, Wissenschaftler am HeiGIT und dem Geographischen Institut der Universität Heidelberg. „Diese zu erwartenden Veränderungen sollte man nicht einfach geschehen lassen, sondern vermehrt versuchen, sie unter Berücksichtigung des biophysikalischen Potenzials zu gestalten.”

„Die Sicherstellung der weltweiten Ernährungssicherung ist eine der Hauptherausforderungen unserer Zeit – und der Klimawandel wird dieses Problem in vielen Regionen noch vergrößern“, sagt Professorin Almut Arneth vom Institut für Meteorologie und Klimaforschung – Atmosphärische Umweltforschung, dem Campus Alpin des KIT in Garmisch-Partenkirchen. „Unsere Studie zeigt deutlich, dass es trotz ungünstiger klimatischer Veränderungen Potenziale gibt, durch eine optimierte Landnutzung die landwirtschaftlichen Erträge deutlich zu steigern und gleichzeitig den Flächenverbrauch zu begrenzen. Es gilt jetzt Wege zu finden, wie wir unsere Landnutzung – unter Berücksichtigung der biophysikalischen Gegebenheiten, aber eben auch unter sozialen Gesichtspunkten – entsprechend verändern können.“

Originalpublikation
Anita Bayer, Sven Lautenbach, Almut Arneth: Benefits and trade-offs of optimizing global land use for food, water, and carbon. Journal Proceedings of the National Academy of Sciences (PNAS), 2023. DOI: doi.org/10.1073/pnas.2220371120

https://www.pnas.org/doi/10.1073/pnas.2220371120

Grafik
Darstellung der in der Studie ermittelten optimalen Landnutzung. Die grünen Punkte visualisieren mögliche optimale Lösungen hinsichtlich Nahrungsmittelproduktion, CO2-Speicherung und der Wasserverfügbarkeit, aufgetragen nach ihren globalen Gesamtsummen der drei Zielwerte. Hinter jedem Punkt verbirgt sich eine Karte der globalen Verteilung von natürlichen Flächen, Acker- und Weideland. Der rote Punkt zeigt die suboptimale Produktion derzeitiger Landnutzung (Grafik: Bayer et. al, 2023)

 

Über das Heidelberg Institute for Geoinformation Technology (HeiGIT)

Das Heidelberg Institute for Geoinformation Technology (HeiGIT), getragen von der Klaus Tschira Stiftung, möchte den Wissens- und Technologietransfer aus der Grundlagenforschung im Bereich Geoinformatik in die Praxis verbessern – und dies auf Basis innovativer Geoinformationstechnologien. Das Institut forscht und entwickelt intelligente Routing- und Navigationsdienste für nachhaltige Mobilität, entwickelt innovative Dienste über Spatial Data Mining und Maschinellem Lernen und stellt Geodaten für die Unterstützung humanitärer Einsätze zur Verfügung.

Mehr Informationen

Details zum KIT-Zentrum Klima und Umwelt

 

 

 

Die 1386 gegründete Ruperto Carola ist eine international ausgerichtete Forschungsuniversität, deren Fächerspektrum die Geistes-, Sozial- und Rechtswissenschaften sowie die Natur-, Ingenieur- und Lebenswissenschaften einschließlich der Medizin umfasst. Ihre Erfolge in den Exzellenzwettbewerben – sie gehört zur Gruppe der deutschen Exzellenzuniversitäten – ebenso wie in internationalen Rankings belegen ihre führende Rolle in der Wissenschaftslandschaft. Es ist das Selbstverständnis der Universität Heidelberg, herausragende Einzeldisziplinen weiterzuentwickeln, die fächerübergreifende Zusammenarbeit zu stärken und ihre Forschungsergebnisse in die Gesellschaft zu tragen. Den rund 30 000 Studierenden bietet sie mit einem forschungsorientierten Studium in mehr als 180 Studiengängen eine nahezu einzigartige Vielfalt an Fächerkombinationen und individuellen Qualifikationswegen.

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 10 000 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 22 800 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen. Das KIT ist eine der deutschen Exzellenzuniversitäten.

lse/mhe, 11.10.2023
Kontakt:

 

Christian Könemann
Pressesprecher
Tel: +49 721 608-41105
Fax: +49 721 608-43658
christian koenemann does-not-exist.kit edu

Kontakt für diese Presseinformation:

Dr. Martin Heidelberger
Pressereferent
Tel.: +49 721 608-41169
martin heidelberger does-not-exist.kit edu
Das Foto kann in der höchsten uns vorliegenden Qualität angefordert werden unter:
presse does-not-exist.kit edu oder +49 721 608-41105.